# NMTCB 2022 Technologist Salary Survey Results 

Submitted by:<br>Robert J. Loch, PhD, MBA, CNMT and the NMTCB Publications Committee

## Introduction

The Nuclear Medicine Technology Certification Board (NMTCB) conducted a salary survey during the fall of 2022. All of NMTCB's 21,849 active certificants were invited to participate in this 20 -minute online survey via their email address on file. The survey itself was delivered online using Open Source LimeSurvey software (http://www.limesurvey.org/). A total of 4,957 responses were received, equating to an overall response rate of $22.7 \%$. Statistical analyses of returned survey results were conducted using IBM SPSS Statistics (Version 27). Each entry in the database was evaluated for errors and completeness. Miscodes were eliminated from the file. Individual records containing blank cells were not used in any analysis that required the missing data. Observations with missing salaries were excluded from the data. Some observations were missing hourly rate but were still included in the analyses. Thus, median hourly rates should be interpreted with caution. Additionally, salaries and hourly rates entered as 0 or other obvious errors were removed from the data. Salaries were calculated for observations with hourly rates, but missing salaries using the calculation (hourly rate*40 hours*52 weeks=annual salary). The survey reporting template and comparisons to 2018 outcomes were drawn from the NMTCB 2018 Salary Survey Results publication by Gregory Passmore, PhD, CNMT, NMTCB(RS). Conclusions extrapolated from this data should be done considering the appropriateness of the sample sizes for each assessment's grouping.

## Description of the Survey Respondents

Technologists identifying themselves as staff technologists, which included PET and NCT, accounted for $68 \%$ of all responding technologists. Of those, $7 \%$ of technologists identified themselves as PET technologists, and 11\% identified themselves as nuclear cardiology technologists. Another 6\% classified themselves as being in non-technologist positions, such as administrators, educators, and applications/sales. About 1\% work in another modality in radiology, describing themselves as working in general radiography, MRI, physics, and pharmacy, and $24 \%$ did not complete the question. Most staff nuclear medicine technologists reported working with four (4) or fewer other technologists. 18.6\% reported working with student nuclear medicine technologists, however only $1.1 \%$ claimed to receive compensation for this effort. Sixty two percent (62\%) of staff technologists identified themselves as fulltime employees, $8 \%$ were part-time, and $4 \%$ worked as needed (PRN). $<1 \%$ of all respondents identified themselves as currently unemployed, which is similar to the unemployment noted in the 2018 survey.

Collectively, $64 \%$ of the nuclear medicine technologist workforce reported as female, with $34 \%$ reporting as male, and the balance (2\%) not reporting as either. When considering full-time staff technologists, the same general proportions found in the collective workforce were reported, $63 \%$ were female (increased from 61\% in 2018), 36\% were male, with the balance (1\%) not reporting as either. However, $78 \%$ of the part-time technologists were female, compared to $20 \%$ male. It is unclear if this distribution is due to life-style choices or some gender selectivity attributed to the employers.

The average length of employment for all technologists with the current employer is 10 years, the median length is 6 years. About $11 \%$ of respondents changed employers in the last 12 months in order to achieve an increase in salary. A total of $24 \%$ of the respondents credentialed as CNMT by the NMTCB are also registered as nuclear medicine technologists by the ARRT and credentialed as RT(N). $11 \%$ of responding CNMT's are also registered by the ARRT as radiographers RT(T). About 28\% of technologists
hold specialty certifications. This includes $15 \%$ of CNMTs who report holding a dual certification in NMT and CT ( $9 \%$ ARRT(CT) and $6 \%$ NMTCB(CT)). Three percent of respondents report having the NCT specialty credential. A slightly higher percentage of NMTs (4\%), report having the PET specialty credential. The remainder includes radiation safety (RS), NMAA, MRI, interventional radiography, radiation therapy, DEXA, and Canadian credentialed technologists.

## Salary by Job Description

The median, mean (sd), and range of the annual full-time base salaries for the nuclear medicine-related job descriptions sorted in terms of highest to lowest median salaries are described in Table 1. The results of a Kruskal-Wallis test determined that statistically significant differences existed in salaries among the job descriptions ( $p<0.001$ ). An hourly equivalent of the medial salaries is also included. The current median salary for general nuclear medicine technology skills is $\$ 80,000$ or $\$ 41$ per hour, using the hospital-based general imaging technologist as the standard for NMT salary comparisons. This is about a $\$ 9,000$ increase in annual salary from the 2018 salary survey. The range of salary for technologists in these positions is wide, ranging from $\$ 5,000$ to $\$ 220,000$ per year.

Table 1 - Annual Base Salaries by Position

| Primary Job <br> Description | N | Median | Mean | (sd) | Max | Min | Media <br> n \$/hr* |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Administrative <br> Professional | 16 | $\$ 109,756$ | $\$ 118,111$ | $\$ 32,606$ | $\$ 230,054$ | $\$ 88,900$ | $\$ 52.50$ |
| Applications Specialist | 17 | $\$ 103,400$ | $\$ 104,931$ | $\$ 12,515$ | $\$ 125,000$ | $\$ 80,000$ | $\$ 48.97$ |
| Clinical Supervisor - <br> Administrator: no <br> Ionger actively involved <br> in performing routine <br> clinical procedures | 52 | $\$ 108,750$ | $\$ 114,538$ | $\$ 24,487$ | $\$ 195,000$ | $\$ 27,000$ | $\$ 53.00$ |
| Clinical Supervisor - <br> Chief Tech: still actively <br> involved in performing <br> routine clinical | 344 | $\$ 96,485$ | $\$ 100,118$ | $\$ 23,560$ | $\$ 201,000$ | $\$ 43,200$ | $\$ 48.00$ |
| procedures as well as <br> having significant <br> administrative duties |  |  |  |  |  |  |  |
| Educator: Nuclear <br> Medicine Classroom <br> Instructor/Adjunct <br> Lecturer (hired <br> specifically to instruct <br> students in the <br> classroom) | 6 | $\$ 83,200$ | $\$ 94,150$ | $\$ 25,650$ | $\$ 145,000$ | $\$ 78,000$ | $\$ 48.00$ |


| Educator: Nuclear <br> Medicine Clinical <br> Instructor (hired <br> specifically to instruct <br> students in the clinical <br> setting) | 3 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Educator: Nuclear <br> Medicine Program <br> Director | 31 | $\$ 92,700$ | $\$ 77,748$ | $\$ 15,862$ | $\$ 90,544$ | $\$ 60,000$ | $\$ 30.00$ |
| Educator: Nuclear <br> Medicine Other | 2 | $\$ 81,500$ | $\$ 81,500$ | $\$ 34,648$ | $\$ 106,000$ | $\$ 57,000$ | $\$ 36.81$ |
| Employed - but no <br> longer working in a <br> nuclear medicine or <br> radiology-related field | 9 | $\$ 82,000$ | $\$ 88,277$ | $\$ 43,788$ | $\$ 150,000$ | $\$ 24,000$ | $\$ 40.50$ |
| Medical/Health <br> Physicist | 14 | $\$ 104,000$ | $\$ 108,912$ | $\$ 37,144$ | $\$ 200,000$ | $\$ 71,200$ | $\$ 54.16$ |
| Nuclear Medicine <br> Technologist: private <br> manufacturer | 1 | $\$ 170,000$ | $\$ 170,000$ | $\$ 49,500$ | $\$ 47.11$ |  |  |
| Nuclear Medicine <br> Technologist: self- <br> employed | 8 | $\$ 66,500$ | $\$ 69,500$ | $\$ 27,656$ | $\$ 102,000$ | $\$ 27,000$ | $\$ 46.25$ |
| Physician - Nuclear <br> Mucdicine |  |  |  |  |  |  |  |
| Nuclear Medicine <br> Technologist: <br> temporary staffing <br> service | 14 | $\$ 75,500$ | $\$ 89,521$ | $\$ 36,597$ | $\$ 187,500$ | $\$ 44,720$ | $\$ 43.75$ |
| Nuclear Medicine- <br> Related Position in the <br> Private Sector: Other | 15 | $\$ 95,000$ | $\$ 105,313$ | $\$ 22,193$ | $\$ 160,000$ | $\$ 85,000$ | $\$ 45.10$ |
| Other | 42 | $\$ 88,334$ | $\$ 85,178$ | $\$ 43,788$ | $\$ 150,000$ | $\$ 24,000$ | $\$ 44.28$ |
| Pharmacist/Nuclear <br> Pharmacist | 5 | $\$ 80,000$ | $\$ 93,140$ | $\$ 32,324$ | $\$ 150,000$ | $\$ 71,200$ | $\$ 37.40$ |


| Private Sector position <br> in another radiologic <br> discipline (sonography, <br> MRI, CT, radiation <br> oncology, etc.) | 2 | $\$ 123,990$ | $\$ 123,990$ | $\$ 21,199$ | $\$ 138,981$ | $\$ 109,000$ | $\$ 59.20$ |
| :---: | :---: | :--- | :--- | :--- | :--- | :--- | :--- |
| Radiology <br> Administrator: <br> responsible for all <br> areas of radiology | 31 | $\$ 115,000$ | $\$ 117,480$ | $\$ 35,055$ | $\$ 211,000$ | $\$ 33,000$ | $\$ 56.16$ |
| Radiology Specialty <br> Administrator: <br> responsible for a single <br> non-nuclear medicine <br> area of radiology | 1 | $\$ 91,000$ |  |  |  |  |  |
| Sales/Marketing <br> Professional | 15 | $\$ 125,000$ | $\$ 139,562$ | $\$ 50,003$ | $\$ 260,000$ | $\$ 85,000$ | $\$ 51.68$ |
| Specialty Supervisor: <br> supervising routine <br> clinical procedures in a <br> specific area of nuclear <br> medicine (cardiac, <br> SPECT, PET, etc.) | 41 | $\$ 101,004$ | $\$ 104,574$ | $\$ 25,112$ | $\$ 195,000$ | $\$ 50,600$ | $\$ 48.74$ |
| Staff Nuclear Medicine <br> Technologist: cardiac <br> only - cardiac | 356 | $\$ 80,493$ | $\$ 78,865$ | $\$ 22,514$ | $\$ 180,000$ | $\$ 20,000$ | $\$ 42.00$ |
| clinic/private office |  |  |  |  |  |  |  |
| Staff Nuclear Medicine <br> Technologist: cardiac <br> only - hospital base | 118 | $\$ 84,000$ | $\$ 83,534$ | $\$ 21,236$ | $\$ 132,000$ | $\$ 8,000$ | $\$ 43.20$ |
| Staff Nuclear Medicine <br> Technologist: general <br> imaging - clinic/private <br> office | 121 | $\$ 78,000$ | $\$ 78,047$ | $\$ 23,350$ | $\$ 152,000$ | $\$ 14,500$ | $\$ 42.25$ |
| Staff Nuclear Medicine <br> Technologist: general <br> imaging (may include <br> some Cardiac and/or <br> PET) - hospital base | 1585 | $\$ 80,000$ | $\$ 81,489$ | $\$ 24,639$ | $\$ 220,000$ | $\$ 5,000$ | $\$ 41.24$ |


| Staff Nuclear Medicine <br> Technologist: mobile <br> NM - hospital/clinic <br> base | 23 | $\$ 80,000$ | $\$ 83,740$ | $\$ 18,047$ | $\$ 130,000$ | $\$ 56,000$ | $\$ 45.78$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Staff Nuclear Medicine <br> Technologist: mobile <br> NM - private mobile <br> imaging service | 23 | $\$ 83,000$ | $\$ 84,828$ | $\$ 28,570$ | $\$ 138,500$ | $\$ 30,000$ | $\$ 40.50$ |
| Staff Nuclear Medicine <br> Technologist: mobile <br> PET - hospital/clinic <br> base | 25 | $\$ 75,000$ | $\$ 81,048$ | $\$ 20,038$ | $\$ 136,500$ | $\$ 50,000$ | $\$ 45.75$ |
| Staff Nuclear Medicine <br> Technologist: mobile <br> PET - private mobile <br> imaging service | 49 | $\$ 84,000$ | $\$ 83,226$ | $\$ 17,782$ | $\$ 124,000$ | $\$ 20,800$ | $\$ 42.00$ |
| Staff Nuclear Medicine <br> Technologist: PET only <br> - clinic/private office | 128 | $\$ 85,394$ | $\$ 87,094$ | $\$ 25,761$ | $\$ 164,320$ | $\$ 32,000$ | $\$ 43.14$ |
| Staff Nuclear Medicine <br> Technologist: PET only <br> - hospital base | 89 | $\$ 91,707$ | $\$ 94,064$ | $\$ 25,361$ | $\$ 180,000$ | $\$ 42,500$ | $\$ 45.75$ |
| Staff Nuclear Medicine <br> Technologist: research <br> (NM or PET) - private <br> research laboratory | 5 | $\$ 86,000$ | $\$ 87,800$ | $\$ 5,848$ | $\$ 95,000$ | $\$ 80,000$ | $\$ 45.00$ |
| Staff Nuclear Medicine <br> Technologist: research <br> (NM or PET) - <br> hospital/clinic/educatio <br> nal institution base | 45 | $\$ 88,200$ | $\$ 89,603$ | $\$ 19,388$ | $\$ 132,000$ | $\$ 45,000$ | $\$ 42.70$ |
| Technologist - General <br> Radiography | 3 | $\$ 70,000$ | $\$ 65,000$ | $\$ 8,660$ | $\$ 70,000$ | $\$ 55,000$ | $\$ 37.38$ |
| Staff Radiologic <br> Technologist - <br> Computed <br> Tomography | 14 | $\$ 72,500$ | $\$ 75,089$ | $\$ 21,638$ | $\$ 130,000$ | $\$ 38,000$ | $\$ 36.03$ |


| Staff Radiologic <br> Technologist-MRI | 7 | $\$ 65,000$ | $\$ 67,611$ | $\$ 11,625$ | $\$ 90,000$ | $\$ 56,800$ | $\$ 36.57$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Staff Technologist (in <br> another radiologic <br> discipline not listed <br> above) | 4 | $\$ 74,250$ | $\$ 77,125$ | $\$ 13,053$ | $\$ 95,000$ | $\$ 65,000$ | $\$ 38.25$ |
| Systems <br> Analyst/Programmer | 1 | $\$ 125,000$ |  |  | $\$ 125,000$ | $\$ 125,000$ | $\$ 60.00$ |

*All hourly rates were not provided by participants.

Those hospital-based staff technologists who work in specialty areas are compensated with an additional $\$ 5,000$ per year for PET (Table 2 ) and $\$ 4,000$ per year for nuclear cardiology (Table 3). This difference in salary is slightly less than what was reported on the 2018 salary survey for PET, which was $\$ 8,000$, and remained the same for nuclear cardiology, which was $\$ 4,000$ at that time.

Table 2 - Annual Base PET Salaries by Position

| Primary Job Description | N | Median | Mean | (sd) | Max | Min <br> Median <br> \$/hr* |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Staff Nuclear Medicine <br> Technologist: mobile PET - <br> hospital/clinic base | 21 | $\$ 80,000$ | $\$ 84,081$ | $\$ 20,150$ | $\$ 136,500$ | $\$ 50,000$ | $\$ 42$ |
| Staff Nuclear Medicine <br> Technologist: mobile PET - <br> private mobile imaging <br> service | 44 | $\$ 84,911$ | $\$ 84,753$ | $\$ 15,988$ | $\$ 124,000$ | $\$ 52,000$ | $\$ 43$ |
| Staff Nuclear Medicine <br> Technologist: PET only - <br> clinic/private office | 112 | $\$ 88,855$ | $\$ 90,836$ | $\$ 24,363$ | $\$ 164,320$ | $\$ 33,000$ | $\$ 45$ |
| Staff Nuclear Medicine <br> Technologist: PET only - <br> hospital base | 81 | $\$ 93,479$ | $\$ 95,731$ | $\$ 25,048$ | $\$ 180,000$ | $\$ 49,000$ | $\$ 48$ |

*All hourly rates were not provided by participants.

Table 3 - Annual Base Cardiac Salaries by Position

| Primary Job Description | $\mathbf{N}$ | Median | Mean | (sd) | Max | Min | Median <br> $\mathbf{\$ / h r *}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Staff Nuclear Medicine <br> Technologist: Cardiac only - <br> cardiac clinic/private office | 279 | $\$ 85,000$ | $\$ 84,894$ | $\$ 18,739$ | $\$ 180,000$ | $\$ 49,000$ | $\$ 42.47$ |
| Staff Nuclear Medicine <br> Technologist: cardiac only - <br> hospital base | 96 | $\$ 86,187$ | $\$ 88,361$ | $\$ 16,564$ | $\$ 132,000$ | $\$ 53,000$ | $\$ 43.82$ |
| Combined | 375 | $\$ 85,000$ | $\$ 85,782$ | $\$ 18,248$ | $\$ 180,000$ | $\$ 49,000$ | $\$ 43$ |

*All hourly rates were not provided by participants.

The results of a Kruskal-Wallis test comparing Cardiac Combined and PET Combined determined that statistically significant differences did exist in salaries between these two groups ( $p=.007$ ). The PET Combined group (median salary= $\$ 88,812$ ) had a statistically significantly higher salary than the Cardiac Combined group (median salary=\$85,000).

Educator's salaries are similar to specialty technologists' salaries. Classroom instructors and clinical instructors reported average salaries of $\$ 78,000-\$ 94,000$ respectively, which align with average salaries for PET $(\$ 89,000)$ and nuclear cardiology technologist $(\$ 85,000)$. Program directors earn an average annual salary of $\$ 96,000$.

Sales/Marketing Professionals reported the highest average annual salary at \$139,000. Radiology Administrators reported an average annual salary of $\$ 117,000$, which is lower than the $\$ 122,000$ reported in 2018. Clinical Supervisors reported an average salary of $\$ 114,000$, an increase from $\$ 107,000$ reported in 2018. Administrative roles such as Chief Techs and Specialty Supervisors, who average $\$ 100,000$ and $\$ 104,000$, respectively. Both roles increased from 2018 by $\$ 11,000$ and $\$ 14,000$ respectively.

Because of the broad salary ranges cited above, the salary differences between specialties was examined with a comparison of entry level technologists' salaries (with entry level defined as technologists who graduated from an NMT program within the years of 2018-2022) as the basis for salary comparison. In order to have an adequate sample size, this analysis required grouping hospitalbased staff technologists and clinic/private office staff, in addition to mobile PET staff, into one group. Table 4 shows that entry level technologists in general imaging and nuclear cardiology earn approximately $\$ 73,000 /$ year, almost $\$ 4,000$ less than those who have entered into the PET specialty. These salary differences are not statistically different between PET, nuclear cardiology, and general nuclear medicine ( $p=0.156$ ). Entry level technologists earn comparable salaries regardless of practice setting.

Table 4 - Annual Entry Level Base Salaries by Position (Graduation Years 2018-2022)

| Primary Job Description | N | Median | Mean | (sd) | Max | Min | Median \$/hr* |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Staff Nuclear Medicine Technologist (All above except cardiac only or PET only) | 241 | \$70,000 | \$72,771 | \$17,890 | \$160,000 | \$36,804 | \$34.63 |
| PET only - Staff Nuclear Medicine Technologist (hospital based, private clinic, and mobile) | 55 | \$73,300 | \$77,236 | \$19,726 | \$145,000 | \$33,000 | \$36.00 |
| Cardiac Only - Staff Nuclear Medicine Technologist (Hospital based and private clinic) | 42 | \$73,000 | \$73,336 | \$13,597 | \$106,000 | \$49,000 | \$36.75 |
| Combined | 338 | \$71,062 | \$73,568 | \$17,761 | \$160,000 | \$33,000 | \$35.00 |

*All hourly rates were not provided by participants.

## Population Base and Geographic Location

Table 5 describes the average annual base salaries for the hospital-based general imaging technologist category sorted by population base. Technologists employed in major cities earn on average about $\$ 5,000$ more than those in suburban/small city settings. Major city salaries are greater than rural salaries by approximately $\$ 17,000$. A comparison of urban based technologists and rural based technologists shows that the $\$ 3,000$ advantage the urban technologists receives is statistically significant ( $p<0.001$ ). Those employed in larger major cities earn on average approximately $\$ 10,000$ per year more than those in smaller major cities. This pattern of salary differences is similar to the 2018 survey. In general, it can be said that technologists who practice in the rural setting earn significantly less than urban based technologists.

Table 5-Annual Hospital-Based General Imaging Salaries by Regional Population

| Geographic <br> Distribution | $\mathbf{N}$ | Median | Mean | (sd) | Max | Min | Median <br> $\$ / h \mathbf{n}^{*}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Major city with greater <br> than 3 million people | 130 | $\$ 94,500$ | $\$ 98,964$ | $\$ 27,890$ | $\$ 220,000$ | $\$ 45,000$ | $\$ 48.10$ |
| Major city with 1-3 <br> million people | 309 | $\$ 85,000$ | $\$ 89,486$ | $\$ 22,826$ | $\$ 180,000$ | $\$ 40,000$ | $\$ 42.47$ |
| Suburban/Small City | 397 | $\$ 82,500$ | $\$ 83,771$ | $\$ 20,090$ | $\$ 191,360$ | $\$ 40,800$ | $\$ 41.00$ |
| Urban | 455 | $\$ 81,000$ | $\$ 84,159$ | $\$ 20,697$ | $\$ 171,163$ | $\$ 38,400$ | $\$ 40.85$ |
| Rural | 165 | $\$ 80,724$ | $\$ 81,541$ | $\$ 18,388$ | $\$ 145,600$ | $\$ 36,804$ | $\$ 39.83$ |

*All hourly rates were not provided by participants.

Full-time, hospital-based, general imaging technologists' median salaries sorted alphabetically by each U.S. state/territory are described in Table 6. The highest median salaries were reported by those employed in California $(\$ 137,000)$, District of Columbia $(\$ 130,750)$, and Oregon $(\$ 107,000)$. The lowest median salaries included Arkansas $(\$ 70,000)$, West Virginia $(\$ 70,000)$, and Puerto Rico $(\$ 45,000)$. The national median nuclear medicine technologists' annual salary is $\$ 86,600$.

Table 6 - Annual Hospital-Based General Imaging Salaries by State (National Median=\$86,600)

| State or <br> Territory | $\mathbf{N}$ | Median | Mean | (sd) | Max | Min | Median <br> $\$ / \mathbf{h r}^{*}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Alaska | 8 | $\$ 105,300$ | $\$ 107,950$ | $\$ 11,169$ | $\$ 125,000$ | $\$ 97,500$ | $\$ 52.25$ |
| Alabama | 66 | $\$ 74,198$ | $\$ 73,968$ | $\$ 13,429$ | $\$ 111,500$ | $\$ 46,800$ | $\$ 35.50$ |
| Arkansas | 33 | $\$ 70,000$ | $\$ 70,331$ | $\$ 14,411$ | $\$ 95,698$ | $\$ 47,000$ | $\$ 36.16$ |
| Arizona | 58 | $\$ 89,720$ | $\$ 88,414$ | $\$ 14,355$ | $\$ 117,520$ | $\$ 58,000$ | $\$ 43.50$ |
| California | 153 | $\$ 137,000$ | $\$ 137,057$ | $\$ 30,147$ | $\$ 220,000$ | $\$ 62,000$ | $\$ 69.35$ |
| Colorado | 45 | $\$ 98,000$ | $\$ 97,133$ | $\$ 16,834$ | $\$ 149,219$ | $\$ 62,500$ | $\$ 49.50$ |
| Connecticut | 36 | $\$ 105,500$ | $\$ 109,398$ | $\$ 25,333$ | $\$ 170,000$ | $\$ 63,785$ | $\$ 52.81$ |
| Delaware | 13 | $\$ 90,000$ | $\$ 92,056$ | $\$ 16,285$ | $\$ 133,120$ | $\$ 73,000$ | $\$ 41.79$ |
| Florida | 233 | $\$ 80,000$ | $\$ 82,035$ | $\$ 19,739$ | $\$ 260,000$ | $\$ 38,000$ | $\$ 39.85$ |
| Georgia | 99 | $\$ 87,000$ | $\$ 87,681$ | $\$ 15,775$ | $\$ 130,000$ | $\$ 52,000$ | $\$ 42.00$ |
| Hawaii | 8 | $\$ 101,500$ | $\$ 104,565$ | $\$ 11,200$ | $\$ 124,800$ | $\$ 92,000$ | $\$ 53.83$ |
| Iowa | 35 | $\$ 83,000$ | $\$ 83,192$ | $\$ 15,820$ | $\$ 120,279$ | $\$ 52,000$ | $\$ 41.49$ |
| Idaho | 10 | $\$ 95,250$ | $\$ 95,476$ | $\$ 19,803$ | $\$ 135,000$ | $\$ 70,000$ | $\$ 46.00$ |
| Illinois | 87 | $\$ 93,000$ | $\$ 93,181$ | $\$ 18,525$ | $\$ 160,000$ | $\$ 45,000$ | $\$ 45.00$ |
| Indiana | 68 | $\$ 83,950$ | $\$ 89,623$ | $\$ 24,794$ | $\$ 200,000$ | $\$ 55,000$ | $\$ 42.13$ |
| Kansas | 34 | $\$ 85,000$ | $\$ 85,631$ | $\$ 12,606$ | $\$ 117,000$ | $\$ 59,000$ | $\$ 42.00$ |
| Kentucky | 52 | $\$ 88,846$ | $\$ 86,348$ | $\$ 16,664$ | $\$ 146,600$ | $\$ 41,000$ | $\$ 42.33$ |
| Louisiana | 38 | $\$ 82,750$ | $\$ 80,393$ | $\$ 13,144$ | $\$ 109,000$ | $\$ 50,000$ | $\$ 40.91$ |
| Massachusetts | 46 | $\$ 93,280$ | $\$ 97,687$ | $\$ 18,121$ | $\$ 146,000$ | $\$ 60,000$ | $\$ 48.93$ |
| Maryland | 49 | $\$ 97,700$ | $\$ 96,927$ | $\$ 18,420$ | $\$ 170,000$ | $\$ 59,904$ | $\$ 47.87$ |
| Maine | 11 | $\$ 90,000$ | $\$ 83,178$ | $\$ 15,361$ | $\$ 98,426$ | $\$ 48,000$ | $\$ 45.00$ |
| Michigan | 107 | $\$ 81,016$ | $\$ 81,310$ | $\$ 14,216$ | $\$ 140,000$ | $\$ 45,000$ | $\$ 39.41$ |
| Minnesota | 59 | $\$ 89,500$ | $\$ 91,114$ | $\$ 17,975$ | $\$ 174,000$ | $\$ 52,000$ | $\$ 47.00$ |
| Missouri | 73 | $\$ 93,200$ | $\$ 84,245$ | $\$ 14,069$ | $\$ 111,960$ | $\$ 58,000$ | $\$ 40.82$ |


| Mississippi | 24 | $\$ 78,823$ | $\$ 81,186$ | $\$ 14,427$ | $\$ 110,000$ | $\$ 49,000$ | $\$ 39.66$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Montana | 5 | $\$ 97,360$ | $\$ 89,775$ | $\$ 12,779$ | $\$ 107,000$ | $\$ 72,519$ | $\$ 43.10$ |
| North Carolina | 75 | $\$ 75,774$ | $\$ 80,168$ | $\$ 23,554$ | $\$ 230,054$ | $\$ 40,000$ | $\$ 38.26$ |
| North Dakota | 9 | $\$ 83,000$ | $\$ 84,269$ | $\$ 14,540$ | $\$ 109,000$ | $\$ 65,000$ | $\$ 40.00$ |
| Nebraska | 25 | $\$ 83,000$ | $\$ 82,305$ | $\$ 13,309$ | $\$ 100,880$ | $\$ 56,000$ | $\$ 44.12$ |
| New <br> Hampshire | 12 | $\$ 91,220$ | $\$ 90,453$ | $\$ 11,915$ | $\$ 108,000$ | $\$ 69,000$ | $\$ 44.95$ |
| New Jersey | 56 | $\$ 106,500$ | $\$ 106,736$ | $\$ 20,888$ | $\$ 149,000$ | $\$ 45,480$ | $\$ 50.50$ |
| New Mexico | 22 | $\$ 81,894$ | $\$ 77,686$ | $\$ 15,286$ | $\$ 105,000$ | $\$ 49,000$ | $\$ 41.13$ |
| Nevada | 19 | $\$ 100,068$ | $\$ 102,962$ | $\$ 11,918$ | $\$ 125,000$ | $\$ 84,664$ | $\$ 49.71$ |
| New York | 154 | $\$ 93,800$ | $\$ 96,985$ | $\$ 18,400$ | $\$ 175,000$ | $\$ 60,500$ | $\$ 47.50$ |
| Ohio | 116 | $\$ 82,881$ | $\$ 83,968$ | $\$ 15,608$ | $\$ 145,000$ | $\$ 42,328$ | $\$ 40.64$ |
| Oklahoma | 38 | $\$ 82,000$ | $\$ 81,069$ | $\$ 16,333$ | $\$ 120,000$ | $\$ 48,000$ | $\$ 40.00$ |
| Oregon | 23 | $\$ 107,000$ | $\$ 102,629$ | $\$ 17,739$ | $\$ 133,000$ | $\$ 55,000$ | $\$ 52.00$ |
| Pennsylvania | 124 | $\$ 80,000$ | $\$ 82,906$ | $\$ 20,501$ | $\$ 198,000$ | $\$ 42,650$ | $\$ 39.19$ |
| Rhode Island | 5 | $\$ 81,120$ | $\$ 88,384$ | $\$ 14,003$ | $\$ 112,320$ | $\$ 79,040$ | $\$ 42.50$ |
| South Carolina | 43 | $\$ 79,040$ | $\$ 81,341$ | $\$ 22,654$ | $\$ 196,000$ | $\$ 52,000$ | $\$ 38.50$ |
| South Dakota | 18 | $\$ 72,500$ | $\$ 75,593$ | $\$ 12,013$ | $\$ 100,000$ | $\$ 62,599$ | $\$ 35.00$ |
| Tennessee | 89 | $\$ 75,000$ | $\$ 77,259$ | $\$ 18,751$ | $\$ 160,000$ | $\$ 36,804$ | $\$ 37.00$ |
| Texas | 210 | $\$ 85,598$ | $\$ 88,791$ | $\$ 21,461$ | $\$ 211,000$ | $\$ 43,200$ | $\$ 42.28$ |
| Utah | 14 | $\$ 103,500$ | $\$ 102,220$ | $\$ 15,155$ | $\$ 130,000$ | $\$ 78,500$ | $\$ 49.50$ |
| Virginia | 77 | $\$ 87,000$ | $\$ 88,945$ | $\$ 17,559$ | $\$ 143,000$ | $\$ 43,038$ | $\$ 43.40$ |
| Vermont | 3 | $\$ 94,000$ | $\$ 83,000$ | $\$ 33,867$ | $\$ 110,000$ | $\$ 45,000$ | $\$ 45.25$ |
| Washington | 46 | $\$ 106,831$ | $\$ 110,006$ | $\$ 23,091$ | $\$ 170,000$ | $\$ 60,000$ | $\$ 52.75$ |
| Wisconsin | 92 | $\$ 85,140$ | $\$ 87,987$ | $\$ 21,909$ | $\$ 150,058$ | $\$ 49,000$ | $\$ 44.50$ |
| West Virginia | 23 | $\$ 70,000$ | $\$ 73,292$ | $\$ 16,270$ | $\$ 106,000$ | $\$ 40,000$ | $\$ 37.60$ |
| Wyoming | 6 | $\$ 101,753$ | $\$ 99,937$ | $\$ 24,960$ | $\$ 140,000$ | $\$ 32,400$ | $\$ 49.75$ |
| District of | 6 | $\$ 130,750$ | $\$ 126,950$ | $\$ 25,982$ | $\$ 153,000$ | $\$ 95,600$ | $\$ 63.55$ |
| Columbia | 640 |  |  |  |  |  |  |
| Combined | 2779 | $\$ 86,600$ | $\$ 90,113$ | $\$ 24,099$ | $\$ 260,000$ | $\$ 32,640$ | $\$ 43.00$ |

*All hourly rates were not provided by participants.

In addition to state-to-state salary differences, we find that there are significant regional differences as well. Table 7 sorts the median and average salary data into geographic regions. Similar to the 2018 survey, technologists from the Pacific region report the highest full-time salaries with median value of about $\$ 120,000$ which is $\$ 33,000$ above the national median. The North-East region has the next highest at $\$ 90,000$. The South region reports the lowest median annual salary of $\$ 76,000$ which is $\$ 11,000$ below the national median. The results of a Kruskal-Wallis test determined that statistically significant differences existed in median salaries among regions in Table 7 ( $p<.0 .001$ ). These differences are visually depicted in Figure 1.

Table 7- Annual Hospital-Based General Imaging Salaries by U.S. Region

| U. S. Region/States | N | Median | Mean | (sd) | Max | Min | Median <br> $\$ / h r^{*}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| The Pacific <br> AK, CA, HI, OR, WA | 127 | $\$ 120,000$ | $\$ 123,683$ | $\$ 30,726$ | $\$ 220,000$ | $\$ 55,000$ | $\$ 63.00$ |
| The North-East <br> CT, MA, ME, NY, RI, VT, NH | 137 | $\$ 90,480$ | $\$ 93,146$ | $\$ 17,729$ | $\$ 135,200$ | $\$ 45,000$ | $\$ 46.61$ |
| The Mid-Atlantic <br> DE, MD, NJ, PA, VA, WV | 184 | $\$ 83,626$ | $\$ 85,764$ | $\$ 19,957$ | $\$ 145,000$ | $\$ 42,650$ | $\$ 41.00$ |
| The Mountain <br> AZ, CO, ID, MT, NM, NV, UT, <br> WY | 96 | $\$ 89,064$ | $\$ 89,409$ | $\$ 16,865$ | $\$ 135,000$ | $\$ 49,000$ | $\$ 45.00$ |
| The West Central Mid-West <br> IA, KS, MN, MO, ND, SD NE | 146 | $\$ 80,633$ | $\$ 80,879$ | $\$ 13,030$ | $\$ 108,755$ | $\$ 52,000$ | $\$ 40.06$ |
| The Central South-West <br> AR, LA, OK, TX | 167 | $\$ 80,954$ | $\$ 81,860$ | $\$ 16,439$ | $\$ 130,000$ | $\$ 48,000$ | $\$ 39.67$ |
| The East Central Mid-West <br> IL, IN, OH, WI, MI | 291 | $\$ 81,900$ | $\$ 82,793$ | $\$ 15,685$ | $\$ 160,000$ | $\$ 42,328$ | $\$ 41.27$ |
| The South <br> AL, FL, GA, KY, MS, NC, SC. <br> TN | 339 | $\$ 75,774$ | $\$ 75,559$ | $\$ 14,685$ | $\$ 118,000$ | $\$ 36,774$ | $\$ 38.00$ |

*All hourly rates were not provided by participants.

Figure 1. Median Hospital-Based General Imaging Salaries by U.S. Region


## Gender and Ethnicity

Table 8 describes a profession that is approximately $63 \%$ female and $36 \%$ male (from reported responses, with $1 \%$ not reporting). Using only full-time staff responses across all NMT job descriptions, a gender gap is evident when comparing median salaries across all positions, with approximately $\$ 4,000$ in favor of males. This difference is median salaries among males and females is statistically significant ( $\mathrm{p}<0.001$ ). The gap is similar when just looking at hospital-based general imaging salaries (Table 9) where the difference is just over a $\$ 3,000$. This difference in median salaries among males and females is statistically significant ( $p<0.001$ ). However, the gap has been reduced from $\$ 7,000$ to $\$ 4,000$ for all job descriptions, and $\$ 5,000$ to $\$ 3,000$ for hospital-based imaging when compared to 2018 data.

Table 8 - Median Annual Base Salaries by Gender and Ethnicity (total number, $n$, is shown in parentheses)

| Self-Reported Ethnicity and <br> Gender | Male | Female | Prefer not to <br> answer | Total |
| :---: | :---: | :---: | :---: | :---: |
| African American or Black | $\$ 89,000(33)$ | $\$ 84,285(38)$ |  | $\$ 85,000(71)$ |
| American Indian or Alaskan <br> Native | $\$ 83,480(4)$ | $\$ 70,000(6)$ |  | $\$ 73,480(10)$ |
| Asian or Pacific Islander | $\$ 95,111(36)$ | $\$ 95,000(36)$ |  | $\$ 95,000(72)$ |
| Latino or Hispanic | $\$ 83,000(33)$ | $\$ 79,000(71)$ |  | $\$ 80,000(104)$ |


| 2 or more Heritages | $\$ 87,000(11)$ | $\$ 78,842(22)$ |  | $\$ 80,000(33)$ |
| :---: | :---: | :---: | :---: | :---: |
| White | $\$ 85,000(388)$ | $\$ 81,120(717)$ |  | $\$ 82,300(1105)$ |
| Prefer not to answer | $\$ 96,000(17)$ | $\$ 91,000(23)$ | $\$ 99,840(13)$ | $\$ 96,000(53)$ |
| Total | $\$ 85,000(522)$ | $\$ 81,300(913)$ | $\$ 99,840(13)$ | $\$ 83,000(1448)$ |

Table 9-Annual Hospital-Based General Imaging Salaries by Gender

| Gender | $\mathbf{N}$ | Median | Mean | (sd) | Max | Min |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Male | 532 | $\$ 85,315$ | $\$ 89,455$ | $\$ 21,981$ | $\$ 210,000$ | $\$ 36,804$ |
| Female | 934 | $\$ 81,905$ | $\$ 83,752$ | $\$ 21,265$ | $\$ 220,000$ | $\$ 36,774$ |
| Prefer not to answer | 14 | $\$ 98,920$ | $\$ 109,436$ | $\$ 26,274$ | $\$ 168,000$ | $\$ 78,500$ |
| Total | 1480 | $\$ 83,200$ | $\$ 86,045$ | $\$ 21,851$ | $\$ 220,000$ | $\$ 36,774$ |

Table 10 tells us that $76 \%$ of respondents working in general nuclear medicine imaging identified their ethnic background as White. The next largest group (7.2\%) were technologists of Latino descent, followed by technologists of Asian descent (5\%). African American technologists made up 5\% of the total, those identifying two or more heritages reported $2.3 \%$, and the remaining $0.7 \%$ were Native Americans. Results of a Kruskal-Wallis test indicate that statistically significant differences existed in median salary by ethnicity ( $\mathrm{p}<0.001$ ), favoring Asian or Pacific Islanders by $\$ 12,000$ more than the overall median. However, due to the low numbers of individuals in each non-white category, caution is advised when interpreting any discrepancies in the ethnicity salary statistics.

Table 10 - Annual Hospital-Based General Imaging Salaries by Ethnic Background (National Median=\$86,600)

| Reported Ethnicity | $\mathbf{N}$ | Median | Mean | (sd) | Max | Min |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| African American or Black | 71 | $\$ 85,000$ | $\$ 87,671$ | $\$ 24,540$ | $\$ 210,000$ | $\$ 50,000$ |
| American Indian or Alaskan <br> Native | 10 | $\$ 73,480$ | $\$ 79,136$ | $\$ 15,251$ | $\$ 110,000$ | $\$ 62,400$ |
| Asian or Pacific Islander | 72 | $\$ 95,000$ | $\$ 100,525$ | $\$ 31,581$ | $\$ 180,000$ | $\$ 48,000$ |
| Latino or Hispanic | 104 | $\$ 80,000$ | $\$ 80,486$ | $\$ 22,575$ | $\$ 149,000$ | $\$ 36,774$ |
| Two or more Heritages | 33 | $\$ 80,000$ | $\$ 88,356$ | $\$ 31,561$ | $\$ 165,000$ | $\$ 42,650$ |
| White | 1107 | $\$ 82,350$ | $\$ 84,657$ | $\$ 19,775$ | $\$ 220,000$ | $\$ 36,804$ |
| Total | 1452 | $\$ 83,000$ | $\$ 85,842$ | $\$ 21,856$ | $\$ 220,000$ | $\$ 36,774$ |

Table 11 would also support differences in median salaries based on regional differences as opposed to racial differences. Results of an ANOVA test determined statistical significant differences between groups $(F(6,1441)=[10.490], p<0.001)$. Similarly, as above, due to the low numbers of individuals in each non-white category, caution is advised when interpreting any discrepancies in the ethnicity salary statistics.

Table 11 - Median Annual Base Salaries by Region and Ethnicity (total number, $n$, is shown in parentheses)

| Ethnicity | The Pacific | The <br> North- <br> East | The MidAtlantic | The Mountain | The <br> West Central MidWest | The Central SouthWest | The East Central Mid-West | The South |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| African <br> American or Black | $\$ 145,500$ <br> (4) | $\begin{gathered} \$ 87,000 \\ (10) \end{gathered}$ | $\begin{gathered} \$ 90,024 \\ (12) \end{gathered}$ | $\$ 110,345$ <br> (2) | $\begin{gathered} \$ 79,327 \\ (6) \end{gathered}$ | $\begin{gathered} \$ 84,535 \\ (12) \end{gathered}$ | $\begin{gathered} \$ 83,000 \\ \text { (3) } \end{gathered}$ | $\begin{gathered} \$ 75,000 \\ (22) \end{gathered}$ |
| American Indian or Alaskan Native | $\$ 110,000$ <br> (1) |  |  |  |  | $\begin{gathered} \$ 70,000 \\ (4) \end{gathered}$ | $\$ 65,000$ <br> (1) | \$78,980 <br> (4) |
| Asian or Pacific Islander | $\begin{gathered} \$ 150,000 \\ (18) \end{gathered}$ | $\$ 85,000$ <br> (8) | $\begin{gathered} \$ 100,000 \\ (11) \end{gathered}$ | \$96,116 <br> (4) | $\$ 68,500$ <br> (4) | $\begin{gathered} \$ 83,000 \\ (11) \end{gathered}$ | $\begin{gathered} \$ 95,000 \\ (7) \end{gathered}$ | $\begin{gathered} \$ 75,000 \\ (9) \end{gathered}$ |
| Latino or Hispanic | $\begin{gathered} \hline \$ 106,250 \\ (16) \\ \hline \end{gathered}$ | $\begin{gathered} \$ 82,825 \\ (11) \\ \hline \end{gathered}$ | $\$ 97,500$ <br> (6) | $\begin{gathered} \$ 74,000 \\ (6) \end{gathered}$ | $\$ 68,600$ <br> (1) | $\begin{gathered} \hline \$ 80,640 \\ (23) \\ \hline \end{gathered}$ | $\begin{gathered} \$ 75,955 \\ (8) \\ \hline \end{gathered}$ | $\begin{gathered} \$ 68,000 \\ (33) \\ \hline \end{gathered}$ |
| Two or more Heritages | $\$ 145,000$ <br> (7) | $\$ 86,000$ <br> (3) | $\$ 62,400$ <br> (3) | $\begin{aligned} & \$ 78,000 \\ & (3) \end{aligned}$ | $\begin{gathered} \$ 97,097 \\ (3) \end{gathered}$ | $\begin{gathered} \$ 75,000 \\ (5) \end{gathered}$ | \$66,914 <br> (3) | $\$ 68,675$ <br> (6) |
| White | $\$ 116,500$ <br> (70) | $\begin{gathered} \$ 90,637 \\ (92) \end{gathered}$ | $\begin{gathered} \$ 80,924 \\ (138) \end{gathered}$ | $\begin{gathered} \$ 89,128 \\ (73) \end{gathered}$ | $\begin{gathered} \$ 80,412 \\ (125) \end{gathered}$ | $\begin{gathered} \$ 80,400 \\ (102) \end{gathered}$ | $\begin{gathered} \$ 81,120 \\ (252) \end{gathered}$ | $\begin{gathered} \$ 77,376 \\ (251) \end{gathered}$ |

## Salaries Based on Years of Experience and Age

Table 12 indicates that a recent NMT graduate or entry level nuclear medicine technologist in a hospital based general imaging position will earn a median salary of $\$ 71,000$ per year (approximately $\$ 34 / \mathrm{hr}$ ). This is an increase of $\$ 11,000$ annually (or $\$ 5.29 / \mathrm{hr}$ ) compared to the entry level salaries reported in the 2018 survey.

Table 12 - Annual Base Salaries by years of experience in hospital-based general imaging

| Years of Experience | $\mathbf{N}$ | Median | Mean | (sd) | Max | Min |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Entry Level ( $\leq 5$ years) | 250 | $\$ 71,020$ | $\$ 73,643$ | $\$ 17,367$ | $\$ 160,000$ | $\$ 36,804$ |
| $>5$ years and $\leq 10$ years | 186 | $\$ 79,000$ | $\$ 82,265$ | $\$ 20,873$ | $\$ 171,163$ | $\$ 45,000$ |
| $>10$ years and $\leq 15$ years | 199 | $\$ 85,000$ | $\$ 87,384$ | $\$ 22,516$ | $\$ 180,000$ | $\$ 40,800$ |
| $>15$ years and $\leq 20$ years | 188 | $\$ 88,000$ | $\$ 91,487$ | $\$ 2,124$ | $\$ 191,360$ | $\$ 45,000$ |
| $>20$ years and $\leq 25$ years | 101 | $\$ 89,000$ | $\$ 92,130$ | $\$ 21,358$ | $\$ 210,000$ | $\$ 47,800$ |
| $>25$ years and $\leq 30$ years | 95 | $\$ 94,900$ | $\$ 95,692$ | $\$ 23,567$ | $\$ 180,000$ | $\$ 50,000$ |
| $>30$ years and $\leq 35$ years | 45 | $\$ 90,000$ | $\$ 91,930$ | $\$ 20,233$ | $\$ 150,000$ | $\$ 36,774$ |
| $>35$ years and $\leq 40$ years | 52 | $\$ 96,000$ | $\$ 96,116$ | $\$ 23,399$ | $\$ 170,560$ | $\$ 42,650$ |
| $>40$ years | 22 | $\$ 98,213$ | $\$ 94,655$ | $\$ 21,018$ | $\$ 134,000$ | $\$ 41,000$ |

Figure 2 describes median and average salaries for hospital-based technologists compared to their years of experience. The median salary range from entry level to 40 years or more of experience is reported to be about $\$ 27,000$, which is up from the $\$ 19,000$ difference reported in 2018. The greatest increases in compensation for years of experience are seen by technologists during the 5 years of employment. Technologists with at least 5 years of experience reportedly earn about $\$ 8,000$ more than an entry level technologist. Reported salary increases during the $10,15,20,25,35$, and 40 year intervals are approximately $\$ 6,000, \$ 3,000, \$ 1,000, \$ 5,000, \$ 6,000$, and $\$ 2,000$ respectively. Those at the 30 -year interval reported a decrease in median salary of approximately $\$ 5,000$.

Figure 2. Average Salaries for Hospital-based Technologists Based on Their Years of Experience


The median age of nuclear medicine technologists across all job descriptions is 45 years old, the same as in 2018. For technologists working in hospital-based general imaging the median age is 43 years, one year older than 2018. PET technologists reported a median age of 41 years. Technologists working in the nuclear cardiology specialty reported a median age of 51 years. Median values for these specialties remained the same for PET at 42 years, while nuclear cardiology increased from 47 years to 51 years. The youngest respondents were 20 years old. The oldest respondents were 81 years old. The salaries reported by all groups increase with age. The salary increases for age parallel the increases seen in years of experience (Figure 2), up to age 50 , which is equivalent to $25-30$ years of experience. It appears that the rate of salary change in the later years of one's professional life is less than the rate of salary change seen earlier in one's career. A salary plateau begins around the age of 35 and becomes more variable as one approaches 50 years of age and older.

Figure 3. Median Base Salary by Age


## Education Background and Salaries

An analysis of certificant responses about the highest level of formal education from all NMT job descriptions (Table 13) shows that 28\% have associate's degrees, $56 \%$ have bachelor's degrees, $10 \%$ have master's degrees, less than $1 \%$ have a doctorate, with the balance consisting of certificate program graduates. This was similar to data reported on the 2018 survey. The educational backgrounds in the hospital-based general imaging job description (Table 14) similarly shows a distribution where $29 \%$ have associate's degrees, $59 \%$ have bachelor's degrees, $5 \%$ have master's degrees, less than $1 \%$ have doctoral degrees, with the balance consisting of certificate program graduates. According to the statistics in Table 13 (all NMT job descriptions) the difference between annual base salaries were statistically significant ( $p=0.001$ ). Technologist with a bachelor's degree reported an average of approximately $\$ 1,000$ less than those with a two-year degree. Technologists who have earned their master's and doctoral degrees
reported earning an average of $\$ 5,000$ and $\$ 18,000$ more, respectively, than those with a bachelor's degree.

The average earnings difference is similar when comparing degrees earned for technologists working in the general-imaging category (Table 14). Graduate degrees increase average earning potential for hospital-based technologists, as well as those identifying other job descriptions.

Table 13 - Annual Base Salaries by Highest Degree Obtained (All Full-Time NMT Job Descriptions)

| Highest Degree <br> Obtained | $\mathbf{N}$ | Median | Mean | (sd) | Max | Min | Median <br> Age* | Median <br> Grad <br> Year* |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Certificate of <br> Completion | 119 | $\$ 85,000$ | $\$ 88,308$ | $\$ 21,827$ | $\$ 180,000$ | $\$ 42,650$ | 56 | 1982 |
| Associate's <br> Degree | 588 | $\$ 84,000$ | $\$ 86,051$ | $\$ 21,615$ | $\$ 220,000$ | $\$ 40,000$ | 47 | 2001 |
| Baccalaureate <br> Degree | 1117 | $\$ 83,200$ | $\$ 85,204$ | $\$ 21,584$ | $\$ 191,360$ | $\$ 32,640$ | 43 | 2005 |
| Master's <br> Degree | 107 | $\$ 86,000$ | $\$ 90,215$ | $\$ 20,970$ | $\$ 180,000$ | $\$ 49,920$ | 47 | 2001 |
| Doctorate <br> Degree or <br> higher | 6 | $\$ 88,000$ | $\$ 103,166$ | $\$ 26,693$ | $\$ 138,000$ | $\$ 83,000$ | 55 | 1998 |

*All participants did not provide this information.

Table -4 - Annual Base Salaries by Highest Degree Obtained (Hospital-based General Imaging)

| Highest Degree <br> Obtained | $\mathbf{N}$ | Median | Mean | $\mathbf{( s d )}$ | Max | $\mathbf{M i n}$ | Median <br> Age* | Median <br> Grad <br> Year* |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Certificate of <br> Completion | 86 | $\$ 85,000$ | $\$ 87,347$ | $\$ 20,887$ | $\$ 157,300$ | $\$ 42,650$ | 55 | 1982 |
| Associate's <br> Degree | 412 | $\$ 83,100$ | $\$ 86,235$ | $\$ 22,934$ | $\$ 220,000$ | $\$ 40,000$ | 46 | 2003 |
| Baccalaureate <br> Degree | 838 | $\$ 83,100$ | $\$ 85,436$ | $\$ 21,518$ | $\$ 191,360$ | $\$ 36,774$ | 41 | 2006 |
| Master's Degree | 73 | $\$ 86,000$ | $\$ 90,560$ | $\$ 22,373$ | $\$ 138,000$ | $\$ 83,000$ | 41 | 2005 |
| Doctorate <br> Degree | 6 | $\$ 88,000$ | $\$ 103,166$ | $\$ 26,693$ | $\$ 138,000$ | $\$ 83,000$ | 57 | 2007 |

Salaries of recent graduates from different types of NMT programs were compared in Table 15. This comparison of the median average salary shows that technologists who graduated from a hospital or medical center-based program have a minimum of about $\$ 1,000$ higher median income than a technologist graduating from any of the other programs. University-associated teaching hospital graduates have a higher median income than those that graduate from a community college or four year college or university. Results of a Kruskal-Wallis test showed that there were statistically significant differences in median salaries among the types of NMT educational programs ( $\mathrm{p}<0.001$ ).

Table 15 - Annual Base Salaries by Type of NMT Program Graduated

| Program Type | $\mathbf{N}$ | Median | Mean | (sd) | Max | Min |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Hospital or medical center | 223 | $\$ 86,860$ | $\$ 91,791$ | $\$ 23,674$ | $\$ 191,360$ | $\$ 42,328$ |
| Military-based | 28 | $\$ 84,832$ | $\$ 88,246$ | $\$ 21,156$ | $\$ 128,960$ | $\$ 45,000$ |
| Community College or Tech <br> School | 383 | $\$ 81,300$ | $\$ 84,484$ | $\$ 21,356$ | $\$ 22,000$ | $\$ 40,000$ |
| Four year college or university | 572 | $\$ 82,050$ | $\$ 83,751$ | $\$ 19,852$ | $\$ 180,000$ | $\$ 36,774$ |
| University-associated teaching <br> hospital | 134 | $\$ 85,100$ | $\$ 90,086$ | $\$ 25,828$ | $\$ 171,163$ | $\$ 45,480$ |
| None, on the job trained | 53 | $\$ 85,000$ | $\$ 86,984$ | $\$ 17,711$ | $\$ 140,000$ | $\$ 50,000$ |

## Dual Certification Characteristics for NMT's and Hybrid Imaging Licensure

A total of $36 \%$ of the respondents credentialed as CNMT by the NMTCB are also registered as nuclear medicine technologists by the ARRT and credentialed as RT(N). $18 \%$ of responding CNMT's are also registered by the ARRT as radiographers RT(R). Approximately $22 \%$ of CNMT's also hold a CT certification; $8 \%$ are NMTCB(CT) certified, $13 \%$ are RT(CT) certified, and about $1 \%$ hold both certifications. Similar to the 2018 results, $4 \%$ of respondents report having the NCT specialty credential, and $6 \%$ report having the PET specialty credential, and $1 \%$ report holding both credentials. Forty-eight percent of those PET certified technologists are additionally certified with either an RT(CT) credential (28\%) or an, NMTCB(CT) credential (20\%).

## On-Call Analysis

Sixty-seven percent of the full-time general imaging hospital staff NMT respondents who responded to the on-call survey items said they routinely take call as part of their job-related responsibilities, which falls between $75 \%$ reported in 2013 and $48 \%$ reported in 2018. Twenty-one percent of technologists who perform cardiac imaging in a hospital setting and $22 \%$ of those who perform PET in the hospital setting report taking call. These numbers are half of those reported in 2018. Of the NMT respondents who reported taking call, $81 \%$ receive time-and-a-half call back pay for their hours worked. The next
highest reported pay for hours worked on call was straight time at $9 \%$. These are the same percentages as reported in 2018 . The median dollar pay for stand-by was $\$ 3.00 / \mathrm{hr}$, similar to that in 2018 . Most technologists who take call (73\%) report being paid a minimum of 2 hours when responding to a call.

## Employment

This 2022 survey not only inquired about salary information, it also inquired about employment trends as well. Six percent of respondents claimed that they had been laid off from a position related to their nuclear medicine certification within the last 5 years due to economic reasons. The response is similar to the $5 \%$ reported in 2018. Approximately twice as many full-time jobs were added than eliminated in the last 5 years. About $14 \%$ of respondents reported that their hours per week have been reduced. The average reduction was 10 hours per week. This is less than the $23 \%$ who had a similar experience in 2018. When asked about positions being eliminated or purposefully not filled within the last 5 years, more than $24 \%$ answered yes, with $74 \%$ of those stating that full-time positions had been eliminated. The percentage of respondents answering yes to position elimination is down from 2018 by 17\%, and the percentage of full-time positions eliminated has remained approximately the same. In summary, it would appear that the discipline is more stable with fewer layoffs than it was 5 years ago.

## Summary and Conclusion

These survey results have helped to describe the current demographics and current salary ranges of certified nuclear medicine technologists and their related job descriptions. 68\% of responding technologists identified themselves as staff technologists. Sixty-two percent of staff technologists identified themselves as full-time employees, $8 \%$ were part-time, and $4 \%$ worked PRN. About $28 \%$ of technologists hold specialty certifications. This includes $15 \%$ of CNMT's who report holding a dual certification in NMT and CT. Three percent of respondents report having the NCT specialty credential and $4 \%$ report having the PET specialty credential.

The current median salary for hospital-based general imaging nuclear medicine technology skills is $\$ 80,000$ or $\$ 41$ per hour. This is about a $\$ 9,000$ increase in annual salary from the 2018 salary survey. Those staff technologists who work in specialty areas are compensated somewhat more than the median salary; approximately $\$ 5,000$ per year for PET and $\$ 4,000$ per year for nuclear cardiology.

Technologists who practice in the rural setting earn significantly less (about $\$ 3,000$ ) than urban based technologists, lower than $\$ 5,000$ reported in 2018. Major city salaries outweigh rural salaries by almost $\$ 17,000$, up from $\$ 13,000$ in 2018 . We found that there were statistically significant differences reported between state and regional salaries. The highest median salary was reported by California $(\$ 137,000)$. The state with the lowest median salary was West Virginia $(\$ 70,000)$. Similar to the 2018 survey, technologists from the Pacific region report the highest full-time salaries with median value of about $\$ 120,000$ and the South region reports the lowest median annual salary of $\$ 76,000$.

Sixty-three percent of the nuclear medicine technologist workforce reported as female, which is $1 \%$ more than reported in 2018. The survey suggests that a $\$ 4,000$ gender gap favoring males was evident when comparing median salaries of hospital-based general imaging technologists. This difference in median salaries among males and females is statistically significant ( $p<0.001$ ) and is smaller than the $\$ 5,000$ difference reported in 2018. Seventy-six percent of respondents working in general nuclear medicine imaging identified their race/ethnic background as White, which is 8\% less than that in 2018. Asian or Pacific Islanders reported median salaries of $\$ 12,000$ more than the overall median. Due to the
low numbers of individuals in each non-white category, caution is advised when interpreting any discrepancies in the ethnicity salary statistics.

The median age of nuclear medicine technologists across all job descriptions is 45 years old. For technologists working in hospital-based general imaging the median age is 43 years. Technologists working in the nuclear cardiology subspecialty reported a median age of 51 years. PET technologists reported a median age of 41 years. Technologists are compensated with the greatest increases in salary during the first 15 years of employment. Salary increases fall off significantly as the technologist moves past the 20th year work anniversaries. The salary increases for age parallel the increases seen in years of experience, up to age 50 , which is equivalent to $25-30$ years of experience. It appears that the rate of salary change in the later years of one's professional life is less than the rate of salary change seen earlier in one's career.

Twenty-eight percent of all NMT's have associate's degrees, 56\% have bachelor's degrees, 10\% have master's degrees, and less than 1\% have a doctorate. The salary of a technologist with a bachelor's degree is approximately $\$ 1,000$ less than one with a two-year degree. Further comparing all job descriptions, technologists who have earned their master's and doctoral degrees can expect to earn between $\$ 5,000$ and $\$ 18,000$ more, respectively, than those with a bachelor's degree.

It would appear that the discipline is more stable, with 6\% fewer layoffs than 5 years ago. Approximately twice as many full-time jobs were added than eliminated in the last 5 years. Sixty-seven percent of the full-time general imaging hospital staff NMT respondents routinely take call as part of their job-related responsibilities, which falls between 75\% reported in 2013 and 48\% reported in 2018. However, PET and cardiology call percentages are both decreased since 2018. Of the NMT respondents who reported taking call, $81 \%$ receive time-and-a-half call back pay for their hours worked.

In conclusion, compared to 2018, technologists' salaries are higher, especially for those working in PET. Also, the elimination of positions continues to be low, and more technologists are women. There does exist a salary gap based on gender, and geographic region and location. The reader should not assume that the respondents to this survey represent a true random sample of the total population of nuclear medicine technologists. The length of the survey and personal motivation to respond and complete a lengthy survey probably had un-measurable reliability and/or validity influences on the outcomes. Additionally, the process of analysis and cross-tabulation can result in descriptors and comparisons of groups with small sample sizes where the output median, mean, and range values can be influenced by extreme or atypical data values. Therefore, as with any survey analysis, some caution should be used when interpreting and inferring from the reported statistics. However, the NMTCB believes this data is significant, and therefore is reporting this cross-sectional salary data so that it may serve as a valuable reference for educators, administrators, and technologists.

## Acknowledgements

Katie Neal, MS, NMTCB Executive Director
Sara Johnson, MEd, CNMT, NMTCB(RS), NMTCB Associate Executive Director
Mary Beth Farrell, EdD, CNMT, FSNMMITS, Biostatistics
Gregory Passmore, PhD, CNMT, NMTCB(RS), NMTCB 2018 Salary Survey Results

